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confint.rendo.boots Confidence Intervals for Bootstrapped Model Parameters

Description

Confidence Intervals for Bootstrapped Model Parameters

Usage

## S3 method for class 'rendo.boots'
confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object with bootstrapped parameters. Typically from copulaCorrection

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... ignored, for consistency with the generic function.

Details

Computes the two-sided percentile confidence intervals from the bootstrapped parameter estimates.
The intervals are obtained by selecting the quantile of the bootstrapped parameter estimates corre-
sponding to the given alpha level.

A minimum of 1
min(level,1−level) parameters estimates are needed to derive the confidence interval.

The reason for this is that there is otherwise no natural way to derive the percentiles (ie one cannot
reasonably estimate the 95% quantile of only 7 values).

copulaCorrection Fitting Linear Models Endogenous Regressors using Gaussian Copula

Description

Fits linear models with continuous or discrete endogenous regressors (or a mixture of both) using
Gaussian copulas, as presented in Park and Gupta (2012). This is a statistical technique to address
the endogeneity problem where no external instrumental variables are needed. The important as-
sumption of the model is that the endogenous variables should NOT be normally distributed, if
continuous, preferably with a skewed distribution. The corrections proposed by Qian, Koschmann,
and Xie (2024, p.19-22) are implemented. These mitigate the bias of the original paper for small
and moderate sample sizes.
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Usage

copulaCorrection(formula, data, num.boots = 1000, verbose = TRUE, ...)

Arguments

formula A symbolic description of the model to be fitted. See the "Details" section for
the exact notation.

data A data.frame containing the data of all parts specified in the formula parameter.

num.boots Number of bootstrapping iterations. Defaults to 1000.

verbose Show details about the running of the function.

... Arguments for the log-likelihood optimization function in the case of a single
continuous endogenous regressor. Ignored with a warning otherwise.

start.params A named vector containing a set of parameters to use in the first
optimization iteration. The names have to correspond exactly to the names
of the components specified in the formula parameter. If not provided, a
linear model is fitted to derive them.

optimx.args A named list of arguments which are passed to optimx. This al-
lows users to tweak optimization settings to their liking.

Details

Method:
The underlying idea of the joint estimation method is that using information contained in the
observed data, one selects marginal distributions for the endogenous regressor and the structural
error term, respectively. Then, the copula model enables the construction of a flexible multivariate
joint distribution allowing a wide range of correlations between the two marginals.
Consider the model:

Yt = β0 + β1Pt + β2Xt + ϵt

where t = 1, .., T indexes either time or cross-sectional units, Yt is a 1x1 response variable, Xt

is a kxn exogenous regressor, Pt is a kx1 continuous endogenous regressor, ϵt is a normally
distributed structural error term with mean zero and E(ϵ2) = σ2

ϵ , α and β are model parameters.
The marginal distribution of the endogenous regressor Pt is obtained using the Epanechnikov
kernel density estimator (Epanechnikov, 1969), as below:

ĥ(p) =
1

T · b

T∑
t=1

K

(
p− Pt

b

)
where Pt is the endogenous regressor, K(x) = 0.75 · (1− x2) · I(∥x∥ <= 1) and the bandwidth
b is the one proposed by Silverman (1986), and is equal to b = 0.9 · T−1/5 ·min(s, IQR/1.34).
IQR is the interquartile range while s is the data sample standard deviation and T is the number
of time periods observed in the data. After obtaining the joint distribution of the error term and the
continuous endogenous regressor, the model parameters are estimated using maximum likelihood
estimation.
The additional parameters used during model fitting and printed in summary hence are:
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rho The correlation between the endogenous regressor and the error.
sigma The variance of the model’s error.

With more than one continuous endogenous regressor or an endogenous discrete regressor, an
alternative approach to the estimation using Gaussian copula should be applied. This approach is
similar to the control function approach (Petrin and Train, 2010). The core idea is to apply OLS
estimation on the original set of explanatory variables in the model equation above, plus an addi-
tional regressor P ∗

t = Φ−1(H(Pt)). Here, H(Pt) is the marginal distribution of the endogenous
regressor P . Including this regressor solves the correlation between the endogenous regressor
and the structural error, ϵ, OLS providing consistent parameter estimates. Due to identification
problems, the discrete endogenous regressor cannot have a binomial distribution.
Hence, only in the case of a single continuous endogenous regressor maximum likelihood esti-
mation is used. In all other cases, augmented OLS based on Gaussian copula is applied. This
includes cases of multiple endogenous regressors of both discrete and continuous distributions.
In the case of discrete endogenous regressors, a random seed needs to be assigned because the
marginal distribution function of the endogenous regressor is a step function in this case. This
means that the value of P ∗ lies between 2 values, Φ−1(H(Pt − 1)) and Φ−1(H(Pt)). However,
the reported upper and lower bounds of the 95% bootstrapped confidence interval gives indication
of the variance of the estimates.

Since the inference procedure in both cases, augmented OLS and maximum likelihood, occurs
in two stages (first the empirical distribution of the endogenous regressor is computed and then
used in constructing the likelihood function), the standard errors are not correct. Therefore, in
both cases, the standard errors and the confidence intervals are obtained based on the sampling
distributions resulted from bootstrapping. Since the distribution of the bootstrapped parameters is
highly skewed, we report the percentile confidence intervals. Moreover, the variance-covariance
matrix is also computed based on the bootstrapped parameters, and not based on the Hessian.

Formula parameter: The formula argument follows a two part notation:
A two-sided formula describing the model (e.g. y ~ X1 + X2 + P) to be estimated and a second
right-hand side part in which the endogenous regressors and their distributional assumptions are
indicated (e.g. continuous(P)). These two parts are separated by a single vertical bar (|). In the
second part, the special functions continuous, discrete, or a combination of both, are used to
indicate the endogenous regressors and their respective distribution. Both functions use the ...
parameter in which the respective endogenous regressors is specified.
Note that no argument to continuous or discrete is to be supplied as character but as symbols
without quotation marks.
See the example section for illustrations on how to specify the formula parameter.

Value

For all cases, an object of classes rendo.copula.correction, rendo.boots, and rendo.base is
returned which is a list and contains the following components:

formula The formula given to specify the fitted model.

terms The terms object used for model fitting.

model The model.frame used for model fitting.

coefficients A named vector of all coefficients resulting from model fitting.
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names.main.coefs

a vector specifying which coefficients are from the model. For internal usage.
names.vars.continuous

The names of the continuous endogenous regressors.
names.vars.discrete

The names of the discrete endogenous regressors.

fitted.values Fitted values at the found solution.

residuals The residuals at the found solution.

boots.params The bootstrapped coefficients.

For the case of a single continuous endogenous regressor, the returned object further contains the
following components:

start.params A named vector with the initial set of parameters used to optimize the log-
likelihood function.

res.optimx The result object returned by the function optimx after optimizing the log-
likelihood function.

For all other cases, the returned object further contains the following component:

res.lm.real.data

The linear model fitted on the original data together with generated p.star data.

The function summary can be used to obtain and print a summary of the results. Depending on the
returned object, the generic accessor functions coefficients, fitted.values, residuals, vcov,
logLik, AIC, BIC, and nobs are available.

References

Park, S. and Gupta, S., (2012), "Handling Endogenous Regressors by Joint Estimation Using Cop-
ulas", Marketing Science, 31(4), 567-86.

Qian, Y., Koschmann, A., and Xie, H. (2024). "A Practical Guide to Endogeneity Correction Using
Copulas". National Bureau of Economic Research, w32231.

Epanechnikov V (1969). "Nonparametric Estimation of a Multidimensional Probability Density."
Teoriya veroyatnostei i ee primeneniya, 14(1), 156–161.

Silverman B (1986). "Density Estimation for Statistics and Data Analysis". CRC Monographs on
Statistics and Applied Probability. London: Chapman & Hall.

Petrin A, Train K (2010). "A Control Function Approach to Endogeneity in Consumer Choice
Models." Journal of Marketing Research, 47(1), 3–13.

See Also

summary for how fitted models are summarized

vcov for how the variance-covariance matrix is derived

confint for how confidence intervals are derived

optimx for possible elements of parameter optimx.arg
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Examples

data("dataCopCont")
data("dataCopCont2")
data("dataCopDis")
data("dataCopDis2")
data("dataCopDisCont")

## Not run:
# Single continuous: log-likelihood optimization
c1 <- copulaCorrection(y~X1+X2+P|continuous(P), num.boots=10, data=dataCopCont)
# same as above, with start.parameters and number of bootstrappings
c1 <- copulaCorrection(y~X1+X2+P|continuous(P), num.boots=10, data=dataCopCont,

start.params = c("(Intercept)"=1, X1=1, X2=-2, P=-1))

# All following examples fit linear model with Gaussian copulas

# 2 continuous endogenous regressors
c2 <- copulaCorrection(y~X1+X2+P1+P2|continuous(P1, P2),

num.boots=10, data=dataCopCont2)
# same as above
c2 <- copulaCorrection(y~X1+X2+P1+P2|continuous(P1)+continuous(P2),

num.boots=10, data=dataCopCont2)

# single discrete endogenous regressor
d1 <- copulaCorrection(y~X1+X2+P|discrete(P), num.boots=10, data=dataCopDis)

# two discrete endogenous regressor
d2 <- copulaCorrection(y~X1+X2+P1+P2|discrete(P1)+discrete(P2),

num.boots=10, data=dataCopDis2)
# same as above but less bootstrap runs
d2 <- copulaCorrection(y~X1+X2+P1+P2|discrete(P1, P2), num.boots = 10,

data=dataCopDis2)

# single discrete, single continuous
cd <- copulaCorrection(y~X1+X2+P1+P2|discrete(P1)+continuous(P2),

num.boots=10, data=dataCopDisCont)

# For single continuous only: use own optimization settings (see optimx())
# set maximum number of iterations to 50'000
res.c1 <- copulaCorrection(y~X1+X2+P|continuous(P),

optimx.args = list(itnmax = 50000),
num.boots=10, data=dataCopCont)

# print detailed tracing information on progress
res.c1 <- copulaCorrection(y~X1+X2+P|continuous(P),

optimx.args = list(control = list(trace = 6)),
num.boots=10, data=dataCopCont)

# use method L-BFGS-B instead of Nelder-Mead and print report every 50 iterations
res.c1 <- copulaCorrection(y~X1+X2+P|continuous(P),

optimx.args = list(method = "L-BFGS-B",
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control=list(trace = 2, REPORT=50)),
num.boots=10, data=dataCopCont)

# For coef(), the parameter "complete" determines if only the
# main model parameters or also the auxiliary coefficients are returned

c1.all.coefs <- coef(res.c1) # also returns rho and sigma
# same as above
c1.all.coefs <- coef(res.c1, complete = TRUE)

# only main model coefs
c1.main.coefs <- coef(res.c1, complete = FALSE)

## End(Not run)

dataCopCont Simulated Dataset with One Endogenous Continuous Regressor

Description

A dataset with two exogenous regressors, X1,X2, and one endogenous, continuous regressor, P,
having a T-distribution with 3 degrees of freedom. An intercept and a dependent variable, y, are
also included. The true parameter values for the coefficients are: b0 = 2, b1 = 1.5, b2 = -3 and the
coefficient of the endogenous regressor, P, is equal to a1 = -1.

Usage

data("dataCopCont")

Format

A data frame with 2500 observations on 4 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P a numeric vector, continuous and endogenous having T-distribution with 3 degrees of freedom.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>
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dataCopCont2 Simulated Dataset with Two Endogenous Continuous Regressor

Description

A dataset with two exogenous regressors, X1,X2, and two endogenous, continuous regressors, P1
and P2, having a T-distribution with 3 degrees of freedom. An intercept and a dependent variable,
y, are also included. The true parameter values for the intercept and the exogenous regressors’
coefficients are: b0 = 2, b1 = 1.5, b2 = -3. The coefficient of the endogenous regressor P1 is equal
to a1 = -1 and of P2 is equal to a2 = 0.8.

Usage

data("dataCopCont2")

Format

A data frame with 2500 observations on 5 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P1 a numeric vector, continuous and endogenous having T-distribution with 3 degrees of freedom.

P2 a numeric vector, continuous and endogenous having T-distribution with 3 degrees of freedom.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

dataCopDis Simulated Dataset with One Endogenous Discrete Regressor

Description

A dataset with two exogenous regressors, X1,X2, and one endogenous, discrete (Poisson distributed)
regressor, P. An intercept and a dependent variable, y, are also included. The true parameter values
for the coefficients are: b0 = 2, b1 = 1.5, b2 = -3 and the coefficient of the endogenous regressor,
P, is equal to a1 = -1.

Usage

data("dataCopDis")
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Format

A data frame with 2500 observations on 4 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P a numeric vector, continuous and endogenous having T-distribution with 3 degrees of freedom.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

dataCopDis2 Simulated Dataset with Two Endogenous Discrete Regressors

Description

A dataset with two exogenous regressors, X1,X2, and two endogenous, discrete (Poisson distributed)
regressors, P1 and P2. An intercept and a dependent variable, y, are also included. The true param-
eter values for the coefficients of the intercept and the exogenous variables are: b0 = 2, b1 = 1.5,
b2 = -3. The true parameter values for the coefficients of the endogenous regressors are a1 = -1 for
P1 and a2 = 0.8 for P2.

Usage

data("dataCopDis2")

Format

A data frame with 2500 observations on 5 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P1 a numeric vector, having a Poisson distribution with parameter lambda equal to 3, and endoge-
nous.

P2 a numeric vector, having a Poisson distribution with parameter lambda equal to 3, and endoge-
nous.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>



dataCopDisCont 11

dataCopDisCont Simulated Dataset with Two Endogenous Regressors

Description

A dataset with two exogenous regressors, X1,X2, and two endogenous regressors, P1, having a Pois-
son distribution with lambda parameter equal to 3, and P2, having a T-distribution with 3 degrees of
freedom. An intercept and a dependent variable, y, are also included. The true parameter values for
the coefficients are: b0 = 2, b1 = 1.5, b2 = -3 and the coefficient of the endogenous regressor P1 is
set to a1 = -1 and of P2 is set to a2=0.8.

Usage

data("dataCopDisCont")

Format

A data frame with 2500 observations on 5 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P1 a numeric vector, continuous and endogenous having Poisson distribution with parameter lambda
equal to 3.

P2 a numeric vector, continuous and endogenous having T-distribution with 3 degrees of freedom.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

dataHetIV Simulated Dataset with One Endogenous Continuous Regressor

Description

A dataset with two exogenous regressors, X1,X2, one endogenous, continuous regressor P, and the
dependent variable y. The true parameter values for the coefficients are: b0 = 2, b1 = 1.5, b2 = 3
and the coefficient of the endogenous regressor, P, is equal to a1 = -1.

Usage

data("dataHetIV")
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Format

A data frame with 2500 observations on 4 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P a numeric vector, continuous and endogenous regressor, normally distributed.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

dataHigherMoments Simulated Dataset with One Endogenous Regressor

Description

A dataset with two exogenous regressors, X1,X2, and one endogenous, continuous regressor P. An
intercept and a dependent variable, y, are also included. The true parameter values for the coeffi-
cients are: b0 = 2, b1 = 1.5, b2 = 3 and the coefficient of the endogenous regressor, P, is equal to a1
= -1.

Usage

data("dataHigherMoments")

Format

A data frame with 2500 observations on 4 variables:

y a numeric vector representing the dependent variable.

X1 a numeric vector, normally distributed and exogenous.

X2 a numeric vector, normally distributed and exogenous.

P a numeric vector, continuous and endogenous regressor, normally distributed.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

Examples

data("dataHigherMoments")
# to recover the parameters,
# on average over many simulations
higherMomentsIV(formula = y ~ X1 + X2 + P|P|IIV(iiv=yp),

data=dataHigherMoments)
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dataLatentIV Simulated Dataset with One Endogenous Continuous Regressor

Description

A dataset with one endogenous regressor P, an instrument Z used to build P, an intercept and a
dependent variable, y. The true parameter values for the coefficients are: b0 = 3 for the intercept
and a1 = -1 for P.

Usage

data("dataLatentIV")

Format

A data frame with 2500 observations on 3 variables:

y a numeric vector representing the dependent variable.

P a numeric vector representing the endogenous variable.

Z a numeric vector used in the construction of the endogenous variable, P.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>

dataMultilevelIV Multilevel Simulated Dataset - Three Levels

Description

A dataset simulated to exemplify the use of the multilevelIV() function. It has 2767 observations,
clustered into 40 level-three variables and 1347 observations at level two. The endogenous regressor
is X15 with a true coefficient value of -1.

Usage

data("dataMultilevelIV")
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Format

A data frame with 2767 observations clustered into 40 level-three variables and 1347 level-two
variables.

y a numeric vector representing the dependent variable.

X11 a level-one numeric vector representing a categorical exogenous variable with true parameter
value equal to 3.

X12 a level-one numeric vector representing a binomial distributed exogenous variable with true
parameter value equal to 9.

X13 a level-one numeric vector representing a binomial distributed exogenous variable with true
parameter value equal to -2.

X14 a level-two numeric vector representing a normally distributed exogenous variable with true
parameter value equal to 2.

X15 a level-two numeric vector representing a normally distributed endogenous variable, correlated
with the level-two errors. It true parameter value equals to −1 and it has a correlation with the
level two errors equal to 0.7.

X21 a level-two numeric vector representing a binomial distributed exogenous variable with true
parameter value equal to -1.5.

X22 a level-two numeric vector representing a binomial distributed exogenous variable with true
parameter value equal to -4.

X23 a level-two numeric vector representing a binomial distributed exogenous variable with true
parameter value equal to -3.

X24 a level-teo numeric vector representing a normally distributed exogenous variable with true
parameter value equal to 6.

X31 a level-three numeric vector representing a normally distributed exogenous variable with true
parameter value equal to 0.5.

X32 a level-three numeric vector representing a truncated normally distributed exogenous variable
with true parameter value equal to 0.1.

X33 a level-three numeric vector representing a truncated normally distributed exogenous variable
with true parameter value equal to -0.5.

SID a numeric vector identifying each level-three observations.

CID a numeric vector identifying each level-two observations.

Author(s)

Raluca Gui <raluca.gui@business.uzh.ch>
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hetErrorsIV Fitting Linear Models with Endogenous Regressors using Het-
eroskedastic Covariance Restrictions

Description

This function estimates the model parameters and associated standard errors for a linear regression
model with one endogenous regressor. Identification is achieved through heteroscedastic covariance
restrictions within the triangular system as proposed in Lewbel(2012).

Usage

hetErrorsIV(formula, data, verbose = TRUE)

Arguments

formula A symbolic description of the model to be fitted. See the "Details" section for
the exact notation.

data A data.frame containing the data of all parts specified in the formula parameter.

verbose Show details about the running of the function.

Details

Method: The method proposed in Lewbel(2012) identifies structural parameters in regression
models with endogenous regressors by means of variables that are uncorrelated with the product
of heteroskedastic errors. The instruments are constructed as simple functions of the model’s data.
The method can be applied when no external instruments are available or to supplement external
instruments to improve the efficiency of the IV estimator. Consider the model in the equation:

yt = β0 + β1Pt + β2Xt + ϵt

where t = 1, .., T indexes either time or cross-sectional units.The endogeneity problem arises
from the correlation of Pt and ϵt. As such:

Pt = γZt + νt,

where Zt is a subset of variables in Xt.
The errors, ϵ and ν, may be correlated with each other. Structural parameters are identified by
an ordinary two-stage least squares regression of Y on X and P , using X and [Z − E(Z)]ν as
instruments. A vital assumption for identification is that cov(Z, ν2) ̸= 0. The strength of the
instrument is proportional to the covariance of (Z − Z̄)ν with ν, which corresponds to the degree
of heteroskedasticity of ν with respect to Z (Lewbel 2012).
The assumption that the covariance between Z and the squared error is different from zero can be
empirically tested (this is checked in the background when calling the function). If it is zero or
close to zero, the instrument is weak, producing imprecise estimates, with large standard errors.
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Formula parameter: The formula argument follows a four part notation:
A two-sided formula describing the model (e.g. y ~ X1 + X2 + P), a single endogenous regressor
(e.g. P), and the exogenous variables from which the internal instrumental variables should be
build (e.g. IIV(X1) + IIV(X2)), each part separated by a single vertical bar (|).
The instrumental variables that should be built are specified as (multiple) functions, one for each
instrument. This function is IIV and uses the following arguments:

... The exogenous regressors to build the internal instruments from. If more than one is given,
separate instruments are built for each.

Note that no argument to IIV is to be supplied as character but as symbols without quotation
marks.
Optionally, additional external instrumental variables to also include in the instrumental variable
regression can be specified. These external instruments have to be already present in the data and
are provided as the fourth right-hand side part of the formula, again separated by a vertical bar.
See the example section for illustrations on how to specify the formula parameter.

Value

Returns an object of classes rendo.ivreg and ivreg, It extends the object returned from function
ivreg of package AER and slightly modifies it by adapting the call and formula components.
The summary function prints additional diagnostic information as described in documentation for
summary.ivreg.

All generic accessor functions for ivreg such as anova, hatvalues, or vcov are available.

References

Lewbel, A. (2012). Using Heteroskedasticity to Identify and Estimate Mismeasured and Endoge-
nous Regressor Models, Journal of Business & Economic Statistics, 30(1), 67-80.

Angrist, J. and Pischke, J.S. (2009). Mostly Harmless Econometrics: An Empiricists Companion,
Princeton University Press.

See Also

ivreg

Examples

data("dataHetIV")
# P is the endogenous regressor in all examples
# X1 generates a weak instrument but for the examples
# this is ignored

# 2 IVs, one from X1, one from X2
het <- hetErrorsIV(y~X1+X2+P|P|IIV(X1)+IIV(X2), data=dataHetIV)
# same as above
het <- hetErrorsIV(y~X1+X2+P|P|IIV(X1,X2), data=dataHetIV)

# use X2 as an external IV
het <- hetErrorsIV(y~X1+P|P|IIV(X1)|X2, data=dataHetIV)
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summary(het)

higherMomentsIV Fitting Linear Models with Endogenous Regressors using Lewbel’s
Higher Moments Approach

Description

Fits linear models with one endogenous regressor using internal instruments built using the ap-
proach described in Lewbel A. (1997). This is a statistical technique to address the endogeneity
problem where no external instrumental variables are needed. The implementation allows the in-
corporation of external instruments if available. An important assumption for identification is that
the endogenous variable has a skewed distribution.

Usage

higherMomentsIV(formula, data, verbose = TRUE)

Arguments

formula A symbolic description of the model to be fitted. See the "Details" section for
the exact notation.

data A data.frame containing the data of all parts specified in the formula parameter.

verbose Show details about the running of the function.

Details

Method:
Consider the model:

Yt = β0 + β1Xt + αPt + ϵt (1)

Pt = γZt + νt (2)

The observed data consist of Yt, Xt and Pt, while Zt, ϵt, and νt are unobserved. The endogeneity
problem arises from the correlation of Pt with the structural error ϵt, since E(ϵν) ̸= 0. The
requirement for the structural and measurement error is to have mean zero, but no restriction is
imposed on their distribution.
Let S̄ be the sample mean of a variable St and Gt = G(Xt) for any given function G that has
finite third own and cross moments. Lewbel(1997) proves that the following instruments can be
constructed and used with two-stage least squares to obtain consistent estimates:

q1t = (Gt − Ḡ) (3a)

q2t = (Gt − Ḡ)(Pt − P̄ ) (3b)
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q3t = (Gt − Ḡ)(Yt − Ȳ ) (3c)

q4t = (Yt − Ȳ )(Pt − P̄ ) (3d)

q5t = (Pt − P̄ )2 (3e)

q6t = (Yt − Ȳ )2 (3f)

Instruments in equations 3e and 3f can be used only when the measurement and the structural
errors are symmetrically distributed. Otherwise, the use of the instruments does not require any
distributional assumptions for the errors. Given that the regressors G(X) = X are included as
instruments, G(X) should not be linear in X in equation 3a.
Let small letter denote deviation from the sample mean: si = Si − S̄. Then, using as instruments
the variables presented in equations 3 together with 1 and Xt, the two-stage-least-squares esti-
mation will provide consistent estimates for the parameters in equation 1 under the assumptions
exposed in Lewbel(1997).

Formula parameter:
The formula argument follows a four part notation:
A two-sided formula describing the model (e.g. y ~ X1 + X2 + P), a single endogenous regressor
(e.g. P), and the exogenous variables from which the internal instrumental variables should be
build (e.g. IIV(iiv=y2)), each part separated by a single vertical bar (|).
The instrumental variables that should be built are specified as (multiple) functions, one for each
instrument. This function is IIV and uses the following arguments:

iiv Which internal instrument to build. One of g, gp, gy, yp, p2, y2 can be chosen.
g Which function g represents in iiv. One of x2, x3, lnx, 1/x can be chosen. Only required if

the type of internal instrument demands it.
... The exogenous regressors to build the internal instrument. If more than one is given, separate

instruments are built for each. Only required if the type of internal instrument demands it.

Note that no argument to IIV is to be supplied as character but as symbols without quotation
marks.
Optionally, additional external instrumental variables to also include in the instrumental variable
regression can be specified. These external instruments have to be already present in the data and
are provided as the fourth right-hand side part of the formula, again separated by a vertical bar.
See the example section for illustrations on how to specify the formula parameter.

Value

Returns an object of classes rendo.ivreg and ivreg, It extends the object returned from function
ivreg of package AER and slightly modifies it by adapting the call and formula components.
The summary function prints additional diagnostic information as described in documentation for
summary.ivreg.

All generic accessor functions for ivreg such as anova, hatvalues, or vcov are available.

References

Lewbel A (1997). “Constructing Instruments for Regressions with Measurement Error When No
Additional Data are Available, With an Application to Patents and R&D.” Econometrica, 65(5),
1201–1213.
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See Also

ivreg

Examples

data("dataHigherMoments")
# P is the endogenous regressor in all examples

# 2 IVs with g*p, g=x^2, separately for each regressor X1 and X2.
hm <- higherMomentsIV(y~X1+X2+P|P|IIV(iiv=gp, g=x2, X1, X2),

data = dataHigherMoments)
# same as above
hm <- higherMomentsIV(y~X1+X2+P|P|IIV(iiv=gp, g=x2, X1) +

IIV(iiv=gp, g=x2, X2),
data = dataHigherMoments)

# 3 different IVs
hm <- higherMomentsIV(y~X1+X2+P|P|IIV(iiv=y2) + IIV(iiv=yp) +

IIV(iiv=g,g=x3,X1),
data = dataHigherMoments)

# use X2 as external IV
hm <- higherMomentsIV(y~X1+P|P|IIV(iiv=y2)+IIV(iiv=g,g=lnx,X1)| X2,

data = dataHigherMoments)
summary(hm)

latentIV Fitting Linear Models with one Endogenous Regressor using Latent
Instrumental Variables

Description

Fits linear models with one endogenous regressor and no additional explanatory variables using
the latent instrumental variable approach presented in Ebbes, P., Wedel, M., Böckenholt, U., and
Steerneman, A. G. M. (2005). This is a statistical technique to address the endogeneity problem
where no external instrumental variables are needed. The important assumption of the model is that
the latent variables are discrete with at least two groups with different means and the structural error
is normally distributed.

Usage

latentIV(
formula,
data,
start.params = c(),
optimx.args = list(),
verbose = TRUE

)
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Arguments

formula A symbolic description of the model to be fitted. Of class "formula".

data A data.frame containing the data of all parts specified in the formula parameter.

start.params A named vector containing a set of parameters to use in the first optimization
iteration. The names have to correspond exactly to the names of the components
specified in the formula parameter. If not provided, a linear model is fitted to
derive them.

optimx.args A named list of arguments which are passed to optimx. This allows users to
tweak optimization settings to their liking.

verbose Show details about the running of the function.

Details

Let’s consider the model:

Yt = β0 + αPt + ϵt

Pt = π
′
Zt + νt

where t = 1, .., T indexes either time or cross-sectional units, Yt is the dependent variable, Pt is a k
x 1 continuous, endogenous regressor, ϵt is a structural error term with mean zero and E(ϵ2) = σ2

ϵ ,
α and β0 are model parameters. Zt is a l x 1 vector of instruments, and νt is a random error with
mean zero and E(ν2) = σ2

ν . The endogeneity problem arises from the correlation of P and ϵt
through E(ϵν) = σϵν

latentIV considers Z
′

t to be a latent, discrete, exogenous variable with an unknown number of
groups m and π is a vector of group means. It is assumed that Z is independent of the error terms ϵ
and ν and that it has at least two groups with different means. The structural and random errors are
considered normally distributed with mean zero and variance-covariance matrix Σ:

Σ =

(
σ2
ϵ&σϵν

σϵν&σ2
ν

)
The identification of the model lies in the assumption of the non-normality of Pt, the discreteness
of the unobserved instruments and the existence of at least two groups with different means.

The method has been implemented such that the latent variable has two groups. Ebbes et al.(2005)
show in a Monte Carlo experiment that even if the true number of the categories of the instrument is
larger than two, estimates are approximately consistent. Besides, overfitting in terms of the number
of groups/categories reduces the degrees of freedom and leads to efficiency loss. For a model with
additional explanatory variables a Bayesian approach is needed, since in a frequentist approach
identification issues appear.

Identification of the parameters relies on the distributional assumptions of the latent instruments as
well as that of the endogenous regressor Pt. Specifically, the endogenous regressor should have a
non-normal distribution while the unobserved instruments, Z, should be discrete and have at least
two groups with different means Ebbes, Wedel, and Böckenholt (2009). A continuous distribution
for the instruments leads to an unidentified model, while a normal distribution of the endogenous
regressor gives rise to inefficient estimates.

Additional parameters used during model fitting and printed in summary are:
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pi1 The instrumental variables Z are assumed to be divided into two groups. pi1 represents the
estimated group mean of the first group.

pi2 The estimated group mean of the second group of the instrumental variables Z.

theta5 The probability of being in the first group of the instruments.

theta6 The variance, σ2
ϵ

theta7 The covariance, σϵν

theta8 The variance, σ2
ν

Value

An object of classes rendo.latent.IV and rendo.base is returned which is a list and contains the
following components:

formula The formula given to specify the fitted model.

terms The terms object used for model fitting.

model The model.frame used for model fitting.

coefficients A named vector of all coefficients resulting from model fitting.
names.main.coefs

a vector specifying which coefficients are from the model. For internal usage.

start.params A named vector with the initial set of parameters used to optimize the log-
likelihood function.

res.optimx The result object returned by the function optimx after optimizing the log-
likelihood function.

hessian A named, symmetric matrix giving an estimate of the Hessian at the found so-
lution.

m.delta.diag A diagonal matrix needed when deriving the vcov to apply the delta method on
theta5 which was transformed during the LL optimization.

fitted.values Fitted values at the found optimal solution.

residuals The residuals at the found optimal solution.

The function summary can be used to obtain and print a summary of the results. The generic ac-
cessor functions coefficients, fitted.values, residuals, vcov, confint, logLik, AIC, BIC,
case.names, and nobs are available.

References

Ebbes, P., Wedel,M., Böckenholt, U., and Steerneman, A. G. M. (2005). ’Solving and Testing for
Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evi-
dence for the Effect of Education on Income’. Quantitative Marketing and Economics, 3:365–392.

Ebbes P., Wedel M., Böckenholt U. (2009). “Frugal IV Alternatives to Identify the Parameter for
an Endogenous Regressor.” Journal of Applied Econometrics, 24(3), 446–468.

See Also

summary for how fitted models are summarized

optimx for possible elements of parameter optimx.arg
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Examples

data("dataLatentIV")

# function call without any initial parameter values
l <- latentIV(y ~ P, data = dataLatentIV)
summary(l)

# function call with initial parameter values given by the user
l1 <- latentIV(y ~ P, start.params = c("(Intercept)"=2.5, P=-0.5),

data = dataLatentIV)
summary(l1)

# use own optimization settings (see optimx())
# set maximum number of iterations to 50'000
l2 <- latentIV(y ~ P, optimx.args = list(itnmax = 50000),

data = dataLatentIV)

# print detailed tracing information on progress
l3 <- latentIV(y ~ P, optimx.args = list(control = list(trace = 6)),

data = dataLatentIV)

# use method L-BFGS-B instead of Nelder-Mead and print report every 50 iterations
l4 <- latentIV(y ~ P, optimx.args = list(method = "L-BFGS-B", control=list(trace = 2, REPORT=50)),

data = dataLatentIV)

# read out all coefficients, incl auxiliary coefs
lat.all.coefs <- coef(l4)
# same as above
lat.all.coefs <- coef(l4, complete = TRUE)
# only main model coefs
lat.main.coefs <- coef(l4, complete = FALSE)

multilevelIV Fitting Multilevel GMM Estimation with Endogenous Regressors

Description

Estimates multilevel models (max. 3 levels) employing the GMM approach presented in Kim and
Frees (2007). One of the important features is that, using the hierarchical structure of the data,
no external instrumental variables are needed, unlike traditional instrumental variable techniques.
Specifically, the approach controls for endogeneity at higher levels in the data hierarchy. For ex-
ample, for a three-level model, endogeneity can be handled either if present at level two, at level
three or at both levels. Level one endogeneity, where the regressors are correlated with the struc-
tural errors (errors at level one), is not addressed. Moreover, if considered, random slopes cannot
be endogenous. Also, the dependent variable has to have a continuous distribution. The function
returns the coefficient estimates obtained with fixed effects, random effects and the GMM estimator
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proposed by Kim and Frees (2007), such that a comparison across models can be done. Asymp-
totically, the multilevel GMM estimators share the same properties of corresponding fixed effects
estimators, but they allow the estimation of all the variables in the model, unlike the fixed effects
counterpart.

To facilitate the choice of the estimator to be used for the given data, the function also conducts
omitted variable test based on the Hausman-test for panel data (Hausman, 1978). It allows to
compare a robust estimator and an estimator that is efficient under the null hypothesis of no omitted
variables, and to compare two robust estimators at different levels. The results of these tests are
returned when calling summary() on a fitted model.

Usage

multilevelIV(
formula,
data,
lmer.control = lmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun = 1e+05)),
verbose = TRUE

)

Arguments

formula A symbolic description of the model to be fitted. See the "Details" section for
the exact notation.

data A data.frame containing the data of all parts specified in the formula parameter.

lmer.control An output from lmerControl that will be used to fit the lmer model from which
the variance and correlation are obtained.

verbose Show details about the running of the function.

Details

Method: Multilevel modeling is a generalization of regression methods that recognize the exis-
tence of such data hierarchies by allowing for residual components at each level in the hierarchy.
For example, a three-level multilevel model which allows for grouping of students within class-
rooms, over time, would include time, student and classroom residuals (see equation below).
Thus, the residual variance is partitioned into four components: between-classroom (the variance
of the classroom-level residuals), within-classroom (the variance of the student-level residuals),
between student (the variance of the student-level residuals) and within-student (the variance of
the time-level residuals). The classroom residuals represent the unobserved classroom charac-
teristics that affect student’s outcomes. These unobserved variables lead to correlation between
outcomes for students from the same classroom. Similarly, the unobserved time residuals lead
to correlation between a student’s outcomes over time. A three-level model can be described as
follows:

ycst = Z1
cstβ

1
cs +X1

cstβ1 + ϵ1cst

β1
cs = Z2

csβ
2
c +X2

csβ2 + ϵ2cs

β2
c = X3

c β3 + ϵ3c
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.
Like in single-level regression, in multilevel models endogeneity is also a concern. The additional
problem is that in multilevel models there are multiple independent assumptions involving vari-
ous random components at different levels. Any moderate correlation between some predictors
and a random component or error term, can result in a significant bias of the coefficients and of
the variance components. The multilevel GMM approach for addressing endogeneity uses both
the between and within variations of the exogenous variables, but only the within variation of
the variables assumed endogenous. The assumptions in the multilevel generalized moment of
moments model is that the errors at each level are normally distributed and independent of each
other. Moreover, the slope variables are assumed exogenous. Since the model does not handle
"level 1 dependencies", an additional assumption is that the level 1 structural error is uncorrelated
with any of the regressors. If this assumption is not met, additional, external instruments are nec-
essary. The coefficients of the explanatory variables appear in the vectors β1, β2 and β3. The
term β1

cs captures latent, unobserved characteristics that are classroom and student specific while
β2
c captures latent, unobserved characteristics that are classroom specific. For identification, the

disturbance term ϵcst is assumed independent of the other variables, Z1
cst and X1

cst. When all
model variables are assumed exogenous, the GMM estimator is the usual GLS estimator, denoted
as REF. When all variables (except the variables used as slope) are assumed endogenous, the
fixed-effects estimator is used, FE. While REF assumes all explanatory variables are uncorrelated
with the random intercepts and slopes in the model, FE allows for endogeneity of all effects but
sweeps out the random components as well as the explanatory variables at the same levels. The
more general estimator GMM proposed by Kim and Frees (2007) allows for some of the explana-
tory variables to be endogenous and uses this information to build instrumental variables. The
multilevel GMM estimator uses both the between and within variations of the exogenous vari-
ables, but only the within variation of the variables assumed endogenous. When all variables are
assumed exogenous, GMM estimator equals REF. When all covariates are assume endogenous,
GMM equals FE.

Formula parameter:
The formula argument follows a two part notation:
In the first part, the model is specified while in the second part, the endogenous regressors are
indicated. These two parts are separated by a single vertical bar (|).
The first RHS follows the exact same model specification as required by the lmer function of
package lme4 and internally will be used to fit a lmer model. In the second part, one or multiple
endogenous regressors are indicated by passing them to the special function endo (e.g. endo(X1,
X2)). Note that no argument to endo() is to be supplied as character but as symbols without
quotation marks.
See the example section for illustrations on how to specify the formula parameter.

Value

multilevelIV returns an object of class "rendo.multilevel".

The generic accessor functions coef, fitted, residuals, vcov, confint, and nobs, are avail-
able. Note that an additional argument model with possible values "REF", "FE_L2", "FE_L3",
"GMM_L2", or "GMM_L3" is available for summary, fitted, residuals, confint, and vcov to ex-
tract the features for the specified model.

Note that the obtained coefficients are rounded with round(x, digits=getOption("digits")).
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An object of class rendo.multilevel is returned that is a list and contains the following compo-
nents:

formula the formula given to specify the model to be fitted.

num.levels the number of levels detected from the model.

dt.model.data a data.table of model data including data for slopes and level group ids

coefficients a matrix of rounded coefficients, one column per model.
coefficients.se

a matrix of coefficients’ SE, one column per model.

l.fitted a named list which contains the fitted values per model sorted as the input data

l.residuals a named list which contains the residuals per model sorted as the input data

l.vcov a list of variance-covariance matrix, named per model.

V the variance–covariance matrix V of the disturbance term.

W the weight matrix W, such that W=V^(-1/2) per highest level group.

l.ovt a list of results of the Hausman OVT, named per model.

References

Hausman J (1978). “Specification Tests in Econometrics.” Econometrica, 46(6), 1251–1271.

Kim, Jee-Seon and Frees, Edward W. (2007). "Multilevel Modeling with Correlated Effects". Psy-
chometrika, 72(4), 505-533.

See Also

lmer for more details on how to specify the formula parameter

lmerControl for more details on how to provide the lmer.control parameter

summary for how fitted models are summarized

Examples

data("dataMultilevelIV")

# Two levels
res.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE)

# Three levels
res.ml.L3 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1| CID) + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE)

# L2 with multiple endogenous regressors
res.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1|SID) | endo(X15, X21, X22),
data = dataMultilevelIV, verbose = FALSE)
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# same as above
res.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1|SID) | endo(X15, X21) + endo(X22),
data = dataMultilevelIV, verbose = FALSE)

# Fit above model with different settings for lmer()
lmer.control <- lme4::lmerControl(optimizer="nloptwrap",

optCtrl=list(algorithm="NLOPT_LN_COBYLA",
xtol_rel=1e-6))

res.ml.L2.cob <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1|SID) | endo(X15, X21) + endo(X22),

data = dataMultilevelIV, verbose = FALSE,
lmer.control = lmer.control) # use different controls for lmer

# specify argument "model" in the S3 methods to obtain results for the respective model
# default is "REF" for all methods

summary(res.ml.L3)
# same as above
summary(res.ml.L3, model = "REF")

# complete pval table for L3 fixed effects
L3.FE.p <- coef(summary(res.ml.L3, model = "FE_L3"))

# variance covariance matrix
L2.FE.var <- vcov(res.ml.L2, model = "FE_L2")
L2.GMM.var <- vcov(res.ml.L2, model = "GMM_L2")
# residuals
L3.REF.resid <- resid(res.ml.L3, model = "REF")

predict.rendo.copula.correction

Predict method for Models using the Gaussian Copula Approach

Description

Predicted values based on linear models with endogenous regressors estimated using the gaussian
copula.

Usage

## S3 method for class 'rendo.copula.correction'
predict(object, newdata, ...)
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Arguments

object Object of class inheriting from "rendo.copula.correction"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are returned.

... ignored, for consistency with the generic function.

Value

predict.copula.correction produces a vector of predictions

See Also

The model fitting function copulaCorrection

Examples

## Not run:
data("dataCopCont")

c1 <- copulaCorrection(y~X1+X2+P|continuous(P), num.boots=10,
data=dataCopCont)

# returns the fitted values
predict(c1)

# using the data used for fitting also for predicting,
# correctly results in fitted values
all.equal(predict(c1, dataCopCont), fitted(c1)) # TRUE

## End(Not run)

predict.rendo.ivreg Predict method for fitted Regression Models with Internal Instrumental
Variables

Description

Predicted values based on model objects fitted using the instrumental variables regression fitted with
IVs generated from the data.

Usage

## S3 method for class 'rendo.ivreg'
predict(object, newdata, ...)
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Arguments

object Object of class inheriting from "rendo.ivreg"

newdata An optional data frame without any instrumental variables in which to look for
variables with which to predict. If omitted, the fitted values are returned.

... ignored, for consistency with the generic function.

Value

predict.rendo.ivreg produces a vector of predictions

See Also

The model fitting functions hetErrorsIV, higherMomentsIV.

Examples

data("dataHetIV")

het <- hetErrorsIV(y~X1+X2+P|P|IIV(X1, X2),
data = dataHetIV)

# returns the fitted values
predict(het)

# using the data used for fitting also for predicting,
# correctly results in fitted values
all.equal(predict(het, dataHetIV), fitted(het)) # TRUE

predict.rendo.latent.IV

Predict method for Models using the Latent Instrumental Variables
approach

Description

Predicted values based on linear models estimated using the latent instrumental variables approach
for a single endogenous regressor.

Usage

## S3 method for class 'rendo.latent.IV'
predict(object, newdata, ...)
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Arguments

object Object of class inheriting from "rendo.latent.IV"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are returned.

... ignored, for consistency with the generic function.

Value

predict.rendo.latent.IV produces a vector of predictions

See Also

The model fitting function latentIV

Examples

data("dataLatentIV")

lat <- latentIV(y ~ P, data = dataLatentIV)

# returns the fitted values
predict(lat)

# using the data used for fitting also for predicting,
# correctly results in fitted values
all.equal(predict(lat, dataLatentIV), fitted(lat)) # TRUE

predict.rendo.multilevel

Predict method for Multilevel GMM Estimations

Description

Predicted values based on multilevel models employing the GMM approach for hierarchical data
with endogenous regressors.

Usage

## S3 method for class 'rendo.multilevel'
predict(
object,
newdata,
model = c("REF", "FE_L2", "FE_L3", "GMM_L2", "GMM_L3"),
...

)
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Arguments

object Object of class inheriting from "rendo.multilevel"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values for the specified model are returned.

model character string to indicate for which fitted model predictions are made. Possible
values are: "REF", "FE_L2", "FE_L3", "GMM_L2", or "GMM_L3".

... ignored, for consistency with the generic function.

Value

predict.rendo.multilevel produces a vector of predictions

See Also

The model fitting function multilevelIV

Examples

data("dataMultilevelIV")

# Two levels
res.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE)

predict(res.ml.L2, model = "FE_L2")

# using the data used for fitting also for predicting,
# correctly results in fitted values
all.equal(predict(res.ml.L2, dataMultilevelIV, model = "GMM_L2"),

fitted(res.ml.L2, model = "GMM_L2")) # TRUE

REndo Fitting Linear Models with Endogenous Regressors using Latent In-
strumental Variables

Description

Fits linear models with endogenous regressor using latent instrumental variable approaches.

The methods included in the package are Lewbel’s (1997) <doi:10.2307/2171884> higher moments
approach as well as Lewbel’s (2012) <doi:10.1080/07350015.2012.643126> heteroskedasticity ap-
proach, Park and Gupta’s (2012) <doi:10.1287/mksc.1120.0718> joint estimation method that uses
Gaussian copula and Kim and Frees’s (2007) <doi:10.1007/s11336-007-9008-1> multilevel gener-
alized method of moment approach that deals with endogeneity in a multilevel setting. These are
statistical techniques to address the endogeneity problem where no external instrumental variables
are needed.

The main functions to estimate models are:
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latentIV() the latent instrumental variables method of Ebbes et al. (2005)

copulaCorrection() copula correction method proposed by Paek and Gupta (2012)

hetErrorsIV() heteroskedastic errors approach proposed by Lewbel(2012)

higherMomentsIV() higher moments method proposed by Lewbel (1997)

multilevelIV() multilevel GMM method proposed by Kim and Frees (2007)

Differences between current (2.0.0) and previous version of REndo

Note that with version 2.0.0 sweeping changes were which greatly improve functionality but break
backwards compatibility. Various bugs were fixed, performance improved, handling of S3 objects
and methods across the package was harmonized, and a set of argument checks has been added.
Starting with REndo 2.0, all functions support the use of transformations such as I(x^2) or log(x)
in the formulas. Moreover, the call of most of the functions (except latentIV() and multilevelIV())
changed from the previous versions, making use of the Formula package.

Check the NEWS file or our github page for the latest updates and for reporting issues.

See our publication in the Journal of Statistical Software for more details: doi:10.18637/jss.v107.i03.

Author(s)

Maintainer: Raluca Gui <raluca.gui@gmail.com>

Authors:

• Markus Meierer <markus.meierer@business.uzh.ch>

• Rene Algesheimer <market-research@business.uzh.ch>

• Patrik Schilter <patrik.schilter@gmail.com>

References

Gui R, Meierer M, Schilter P, Algesheimer R (2023). “REndo: Internal Instrumental Variables to
Address Endogeneity.” Journal of Statistical Software, 107 (3), 1-43. doi:10.18637/jss.v107.i03

See Also

Useful links:

• https://github.com/mmeierer/REndo

• Report bugs at https://github.com/mmeierer/REndo/issues

https://github.com/mmeierer/REndo
https://doi.org/10.18637/jss.v107.i03
https://doi.org/10.18637/jss.v107.i03
https://github.com/mmeierer/REndo
https://github.com/mmeierer/REndo/issues
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summary.rendo.copula.correction

Summarizing Bootstrapped copulaCorrection Model Fits

Description

summary method for a model of class rendo.copula.correction resulting from fitting copulaCorrection.

Usage

## S3 method for class 'rendo.copula.correction'
summary(object, ...)

Arguments

object an object of class rendo.copula.correction, a result of a call to copulaCorrection.

... ignored, for consistency with the generic function.

Details

For a single continuous endogenous regressor, the estimation is realized in two steps by first obtain-
ing the empirical distribution of the endogenous regressor and then the likelihood function is built.
Also for all other cases the estimation is realized in two steps and hence the standard errors reported
by the fitted OLS model are not correct.

The standard errors and the confidence intervals are therefore obtained using bootstrapping with
replacement as described in Effron (1979). The reported lower and upper boundaries are from the
95% bootstrapped percentile confidence interval. If there are too few bootstrapped estimates, no
boundaries are reported.

For a single continuous endogenous regressor the model was fitted using maximum likelihood op-
timization. The related goodness of fit measures and convergence indicators are also reported here.

Value

The function computes and returns a list of summary statistics which contains the following com-
ponents:

coefficients a px4 matrix with columns for the estimated coefficients for the the original data,
the standard error derived from the bootstrapped parameters, and the lower and
upper boundaries of the 95% bootstrap confidence interval.

num.boots the number of bootstraps performed.
names.main.coefs

a vector specifying which coefficients are from the model. For internal usage.

start.params a named vector with the initial set of parameters used to optimize the log-
likelihood function.

vcov variance covariance matrix derived from the bootstrapped parameters.
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names.vars.continuous

the names of the continuous endogenous regressors.
names.vars.discrete

the names of the discrete endogenous regressors.

For the case of a single continuous endogenous regressor, also the following components resulting
from the log-likelihood optimization are returned:

AIC Akaike’s An Information Criterion for the model fitted on the provided data.

BIC Schwarz’s Bayesian Criterion for the model fitted on the provided data.

KKT1 first Kuhn, Karush, Tucker optimality condition as returned by optimx.

KKT2 second Kuhn, Karush, Tucker optimality condition as returned by optimx.

conv.code the convergence code as returned by optimx.

log.likelihood the value of the log-likelihood function at the found solution for the provided
data.

References

Effron, B.(1979). "Bootstrap Methods: Another Look at the Jackknife", The Annals of Statistics,
7(1), 1-26.

See Also

The model fitting function copulaCorrection

confint for how the confidence intervals are derived

vcov for how the variance-covariance matrix is derived

optimx for explanations about the returned conv.code and KKT.

Function coef will extract the coefficients matrix and function vcov will extract the component
vcov from the returned summary object.

summary.rendo.latent.IV

Summarizing latentIV Model Fits

Description

summary method for a model of class rendo.latent.IV resulting from fitting latentIV

Usage

## S3 method for class 'rendo.latent.IV'
summary(object, ...)
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Arguments

object an object of class rendo.latent.IV, a result of a call to latentIV.

... ignored, for consistency with the generic function.

Value

The function summary.rendo.latent.IV computes and returns a list of summary statistics which
contains the following components:

coefficients a px4 matrix with columns for the estimated coefficients, its standard error, the
t-statistic and corresponding (two-sided) p-value.

start.params a named vector with the initial set of parameters used to optimize the log-
likelihood function.

names.main.coefs

a vector specifying which coefficients are from the model. For internal usage.

vcov variance covariance matrix derived from the hessian.

AIC Akaike’s An Information Criterion for the model fitted on the provided data.

BIC Schwarz’s Bayesian Criterion for the model fitted on the provided data.

KKT1 first Kuhn, Karush, Tucker optimality condition as returned by optimx.

KKT2 second Kuhn, Karush, Tucker optimality condition as returned by optimx.

conv.code the convergence code as returned by optimx.

log.likelihood the value of the log-likelihood function at the found solution for the provided
data.

See Also

The model fitting function latentIV

Function coef will extract the coefficients matrix and function vcov will extract the component
vcov from the returned summary object.

summary.rendo.multilevel

Summarizing Multilevel GMM Estimation with Endogenous Regres-
sors Model Fits

Description

summary method for class "rendo.multilevel".

Usage

## S3 method for class 'rendo.multilevel'
summary(object, model = c("REF", "FE_L2", "FE_L3", "GMM_L2", "GMM_L3"), ...)
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Arguments

object an object of class "rendo.multilevel", usually, a result of a call to multilevelIV.

model character string to indicate which fitted model should be summarized. Possible
values are: "REF", "FE_L2", "FE_L3", "GMM_L2", or "GMM_L3".

... ignored, for consistency with the generic function.

Details

The multilevelIV() function estimates three models, namely: the usual random effects model (REF),
the fixed effects model (FE) and the hierarchical GMM model (GMM) proposed by Kim and Frees
(2007). The fixed effects and the GMM estimators are calculated at each level - so in the case of a
three-level model, the function estimates, besides the random effects, fixed effects models at level
two (FE_L2) and at level three (FE_L3). The same is true for the GMM estimators, the multileve-
lIV() function will return a GMM estimator at level-three (GMM_L3) and a GMM estimator at level
two (GMM_L2).

In order to facilitate the choice of estimator to be used, the summary() function also returns an
omitted variable test (OVT). This test is based on the Hausman test for panel data. The OVT allows
the comparison of a robust eastimator and an estimator which is efficient under the null hypothesis
of no omitted variables. Moreover, it allows the comparison of two robust estimators at different
levels.

For the model specified in argument model, the summary() function returns the summary statis-
tics of the estimated coefficients, together with the results of the omitted variable test between the
specified model and each other model.

Value

For the model specified in argument model, the function summary.rendo.multilevel computes
and returns a list of summary statistics and the results of the omitted variable tests for the fitted
multilevel object given in object.

An object of class summary.rendo.multilevel is returned that is a list using the component call
of argument object, plus,

summary.model the model parameter with which the summary function was called.

coefficients a px4 matrix with columns for the estimated coefficients, its standard error, the
t-statistic and corresponding (two-sided) p-value.

OVT.table results of the Hausman omitted variable test for the specified model compared
to all other models.

vcov variance covariance matrix derived from the GMM fit of this model.

See Also

The model fitting function multilevelIV

Function coef will extract the coefficients matrix and function vcov will extract the component
vcov.
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Examples

data("dataMultilevelIV")
# Fit two levels model
res.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 +

X32 + X33 + (1|SID) | endo(X15),
data = dataMultilevelIV, verbose = FALSE)

# Get summary for FE_L2 (does not print)
res.sum <- summary(res.ml.L2, model = "FE_L2")
# extract table with coefficients summary statistics
sum.stat.FE_L2 <- coef(res.sum)
# extract vcov of model FE_L2
FE_L2.vcov <- vcov(res.sum)
# same as above
FE_L2.vcov <- vcov(res.ml.L2, model = "FE_L2")

vcov.rendo.boots Calculate Variance-Covariance Matrix for Models Fitted with Boot-
strapped Parameters

Description

The variance-covariance matrix is derived from the bootstrapped parameter estimates stored in the
object. It is based on Efron (1979) and calculates the result as follows:

1

B − 1

B∑
b=1

(θb − θ̄)(θb − θ̄)

where B is the number of bootstraps and θ̄ is the mean of the bootstrapped coefficients.

Usage

## S3 method for class 'rendo.boots'
vcov(object, ...)

Arguments

object a fitted model object with bootstrapped parameters. Typically from copulaCorrection

... ignored, for consistency with the generic function.

Value

A matrix of the estimated covariances between the parameter estimates of the model. The row and
column names correspond to the parameter names given by the coef method.
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References

Effron, B.(1979). "Bootstrap Methods: Another Look at the Jackknife", The Annals of Statistics,
7(1), 1-26.
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