Package: REndo 2.4.10
REndo: Fitting Linear Models with Endogenous Regressors using Latent Instrumental Variables
Fits linear models with endogenous regressor using latent instrumental variable approaches. The methods included in the package are Lewbel's (1997) <doi:10.2307/2171884> higher moments approach as well as Lewbel's (2012) <doi:10.1080/07350015.2012.643126> heteroscedasticity approach, Park and Gupta's (2012) <doi:10.1287/mksc.1120.0718> joint estimation method that uses Gaussian copula and Kim and Frees's (2007) <doi:10.1007/s11336-007-9008-1> multilevel generalized method of moment approach that deals with endogeneity in a multilevel setting. These are statistical techniques to address the endogeneity problem where no external instrumental variables are needed. See the publication related to this package in the Journal of Statistical Software for more details: <doi:10.18637/jss.v107.i03>. Note that with version 2.0.0 sweeping changes were introduced which greatly improve functionality and usability but break backwards compatibility.
Authors:
REndo_2.4.10.tar.gz
REndo_2.4.10.zip(r-4.5)REndo_2.4.10.zip(r-4.4)REndo_2.4.10.zip(r-4.3)
REndo_2.4.10.tgz(r-4.4-x86_64)REndo_2.4.10.tgz(r-4.4-arm64)REndo_2.4.10.tgz(r-4.3-x86_64)REndo_2.4.10.tgz(r-4.3-arm64)
REndo_2.4.10.tar.gz(r-4.5-noble)REndo_2.4.10.tar.gz(r-4.4-noble)
REndo_2.4.10.tgz(r-4.4-emscripten)REndo_2.4.10.tgz(r-4.3-emscripten)
REndo.pdf |REndo.html✨
REndo/json (API)
NEWS
# Install 'REndo' in R: |
install.packages('REndo', repos = c('https://mmeierer.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mmeierer/rendo/issues
- dataCopCont - Simulated Dataset with One Endogenous Continuous Regressor
- dataCopCont2 - Simulated Dataset with Two Endogenous Continuous Regressor
- dataCopDis - Simulated Dataset with One Endogenous Discrete Regressor
- dataCopDis2 - Simulated Dataset with Two Endogenous Discrete Regressors
- dataCopDisCont - Simulated Dataset with Two Endogenous Regressors
- dataHetIV - Simulated Dataset with One Endogenous Continuous Regressor
- dataHigherMoments - Simulated Dataset with One Endogenous Regressor
- dataLatentIV - Simulated Dataset with One Endogenous Continuous Regressor
- dataMultilevelIV - Multilevel Simulated Dataset - Three Levels
Last updated 4 months agofrom:374df52a5c. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win-x86_64 | OK | Nov 09 2024 |
R-4.5-linux-x86_64 | OK | Nov 09 2024 |
R-4.4-win-x86_64 | OK | Nov 09 2024 |
R-4.4-mac-x86_64 | OK | Nov 09 2024 |
R-4.4-mac-aarch64 | OK | Nov 09 2024 |
R-4.3-win-x86_64 | OK | Nov 09 2024 |
R-4.3-mac-x86_64 | OK | Nov 09 2024 |
R-4.3-mac-aarch64 | OK | Nov 09 2024 |
Exports:copulaCorrectionhetErrorsIVhigherMomentsIVlatentIVmultilevelIV
Dependencies:abindAERbackportsbootbroomcarcarDataclicolorspacecorpcorcowplotcpp11data.tableDerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivoptimxpbkrtestpillarpkgconfigpracmapurrrquantregR6RColorBrewerRcppRcppEigenrlangsandwichscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithrzoo